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LETTER TO THE EDITOR 

Flux and differences in action for continuous time Hamiltonian 
systems 

R S MacKay and J D Meisst 
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 

Received 9 January 1986 

Abstract. For a time-periodic Hamiltonian H( p, q, r )  of period T, the area crossing a 
collection of curves at time 0 spanning two homotopic orbits of common period nT,  in a 
time 7, is shown to be the difference between the actions, 4 pdq- Hdr, of the orbits. 
Similarly in an autonomous Hamiltonian system of two degrees of freedom the flux of 
energy surface volume per unit time through a surface spanning two homotopic orbits of 
the same energy is given by the difference between the actions, fp .dq ,  of the orbits. 
Analogous results hold for pairs of orbits which converge together in both directions of time. 

In dynamical systems described by area-preserving maps, one can interpret the 
difference between the actions of two periodic orbits of the same rotation number and 
period as the amount of area which crosses any curve which connects the orbits, per 
iteration of the map [ 11. Similar interpretations hold for pairs of orbits which converge 
together in both directions of time ('homoclinic pairs'), such as an orbit on a cantorus 
and an orbit homoclinic to it. In this letter we obtain analogous results for continuous- 
time Hamiltonian systems of 1; and 2 degrees of freedom. This allows the direct 
application of the results of MacKay, Meiss and Percival [l]  to the continuous-time 
case which appears most frequently in applications (e.g. [2]). 

( a )  14 degrees offreedom. Let H be the Hamiltonian for a time-periodic, one 
degree of freedom system on a symplectic manifold M. We denote the period by T. 

(i) Consider two periodic orbits of the same homotopy class on M (i.e. continuously 
deformable into each other), of period nT. Take a surface, U, in the extended (three- 
dimensional) phase space M x { t  mod T}, which spans the two orbits (see figure 1); 
such surfaces exist because of the homotopy condition. Let y be the collection of 
curves formed by the intersection of a with any constant time section t = to modulo 
T. Then the area crossing y in time T is given by 

L L 

where (p, q )  are local canonical coordinates in a simply connected neighbourhood of 
the pair of orbits, and the loop integrals are taken around the orbits. 

(ii) Consider now a homoclinic pair of orbits, such that ( p ' ,  q 1 ) ( t ) - ( p 2 ,  q 2 ) ( t )  + O  
as t + fa, and which are homotopic to zero in the following sense: there exists E > 0 
such that for all large enough positive and negative times t* , the closed curve formed 
by connecting the pair of orbits by curves of length less than E at times t, is homotopic 
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t:t, modT 

Figure 1. Two periodic orbits of the same period and homotopy class, in the extended 
phase space of a T-periodic one degree of freedom system, with a spanning surface U 
intersecting a section I = I, mod T in a collection of curves 7,.  

to zero. Let U and y be defined as before. The area crossing y per period T is 

F = lim (pdq - Hdt), - (pdq - Hdt),  (2) 
t,-+m I,' 

where the integrals are taken along the two orbits. 
( b )  Two degrees offreedom. Let H be the Hamiltonian for an autonomous two 

degree of freedom system. 
(i)  Consider two periodic orbits with the same energy and of the same homotopy 

class. Take any surface, a, in the energy surface which spans from one orbit to the 
other (see figure 2) and which does not contain a critical point of H. The energy surface 
volume crossing U per unit time, which we call the flux, is 

where ( p ,  q )  are local canonical coordinates. 
(ii) Take any homoclinic pair of orbits ( q ' ,  p ' )  and (q2 ,  p 2 )  with the same energy. 

Parametrise the orbits by a parameter T which increases with time, such that q ' ( 7 )  - 
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Figure 2. Flux through a surface U spanning two periodic orbits of the same homotopy 
class, all lying in the same (three-dimensional) energy surface. 

q 2 ( T )  + 0 and PI(.) - p 2 (  T )  + 0 as T +  fa. Suppose the orbits are homotopic as in 
(a(ii)) using the T parameter. Then the flux through any surface U chosen as before is 

4 ’ ( T + )  4 2 ( T + )  

9 ’ ( 7 - )  s2(7-) 
F =  lim J- p.dq-J- P - d q  (4) r*+*m 

where the integrals are taken along the two orbits. 
These results can be summarised by the statement that the flux through a surface 

containing two homotopic orbits is the difference between the actions of the orbits. In 
the case of 1; degrees of freedom the action is defined as the integral of pdq-Hdt.  
For two degrees of freedom the action is defined as the integral of p - dq. 

These formulae allow the calculation of the flux, for example, passing between the 
stable and unstable periodic orbits which form an island chain, between a cantorus 
and an orbit homoclinic to it, or between the two orbits formed by the transversal 
intersections of the stable manifold of one periodic orbit with the unstable manifold 
of another periodic orbit. 

Proof of ( a ) .  Let w be the symplectic form ( w  = dp A dq in canonical coordinates) 
on the phase space M for the Hamiltonian system H(p ,  q, t )  where H is time periodic 
with period T. The flow vector for the dynamics, 6, satisfies 

w(77,5) = dH(77) ( 5 )  

for all vectors 17. Extend the flow to the space M x SI, where the third dimension 
corresponds to time modulo T. The extended flow vector is = (5 , l ) .  Define a volume 
form on M x SI by dt  A w. The ‘flux 2-form’ is defined by the contraction of the volume 
form with the flow: 

$ 4 7 7 1 , 7 7 2 )  = d t  A U(&, 1 7 1  9 172)  ( 6 )  
for any v1, q2 in M x S ’ .  The integral of (p over a surface in M x SI gives the rate at 
which the 3-volume crosses the surface. In particular choose a surface U which spans 
two orbits C, and C2 chosen as in the statement of (a(i))  or (a(ii)). The orientation 
of (+ is chosen so that i?u = C, - C2. Using equation ( 5 )  one can see that 

cp = - d H  A dt. (7) 
Therefore since dw = 0 we have d p  = 0, i.e. the flow is incompressible. 



U28 Letter to the Editor 

Figure 3. Construction for the proof of ( a ) .  

Choose a time section MO, defined by t = to modulo T, and let y = U n MO. In 
general y has many pieces, denoted yi ,  corresponding to the successive intersections 
of the orbits with MO. Let ai be the part of U between yi-r and yi .  Define the surfaces 
ei as those formed by evolving yi- l  with the flow for one period T (see figure 3), and 
yi as the time T image of We claim that yi - yi is homotopic to zero in MO 
because (i) yi can be continuously deformed to yi-l in MO by following the flow in 
MO, and (ii) yiW1 can be continuously deformed to yi by following the projection of 
ui on MO. Let ai be the surface in MO bounded by y i - y i ,  which exists because of 
this homotopy. The surface ai - ei - Si is a closed surface in M x SI and since Q is a 
closed form, its integral over this surface is zero. Thus we have 

I,, = I, + I,. Q v  

On the surface ei, rp is identically zero since 5, is tangent to the flow, so we obtain 
the result 

The right-hand side of (8) can be interpreted as the area crossing yi per period. Since 
y is the union of the yi, the total area crossing y is the sum of (8) over i, which is the 
flux we desire to calculate. Because U is simply connected, local canonical coordinates 
(p, q )  can be defined so that w = d( pdq). From (7) and Stokes’ theorem, the left-hand 
side of (8) can be written 

Jut cp = la,, p dq - Hdt. ( 9 )  

Summing (9) over i we obtain the difference in action of the orbits since Z i a u i  is 
composed of the two orbits with opposite orientation. Thus we obtain (1) or (2) 
depending on the choice of orbit. 

Proof of ( b ) .  Let w be the symplectic form ( w  = dp, A dq, + dp, A dq, in canonical 
coordinates) on the phase space M for Hamiltonian H. As before, the flow vector 5 
satisfies w ( 7 ,  6 )  = d H ( 7 )  for all 7. The symplectic form induces a volume 4-form, 
R =tu A w. The restriction of the volume to the energy surface gives a 3-form, E ,  except 
at critical points of the Hamiltonian (where d H  = 0), defined uniquely through 

O = d H A s .  (10) 
The flux of energy surface volume is obtained from this 3-form by 

$ 4 7 7 1  , 772) = 4 5 ,  771 , T I * ) .  (11) 
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Given two homotopic orbits C,  and C2 and a two-dimensional surface u whose 
boundary is C,  - C2, all contained in an energy surface, such that u contains no critical 
points of H, the Aux through a is 

F = rp. 

To compute this flux, take any vectors 7, and 72 tangent to u and 73 arbitrary. Then 

n(& 71, 7 2 ,  7 3 ) = 0 ( 5 ,  7I)w(?2,  ? 3 ) + w ( &  7 2 ) 0 ( 7 3 ,  71)+w(k 7]3)w(7)1, 7 2 )  

= -dH(7)1)@(72, 7)3)-dH(72)0(7)3, ?1)-dH(73)@(71, 7 2 ) .  

However, since and q2 are tangent to the energy surface, both d H (  7,) and d H (  q 2 )  
are zero, so only the last term contributes. Similarly, equation (10) implies 
d H  A 4 5 ,  ql, q2 ,  7,) = -dH(7 , )~(6 ,  qI, q2)  since dH(5)  = O .  Thus (11) and the 
assumption d H  # 0 imply 

d 7 1 , 7 2 ) = w ( 7 1 , 7 2 )  

for any T , ,  72 tangent to the energy surface. Since u is simply connected we can 
choose local canonical coordinates (p, q ) ,  so that w = d( p - dq). Then the flux is 

The boundary of U is C, - C2; thus we have shown, as explicitly written in (3) and 
(4), that the difference of action of the two orbits is the flux of energy surface volume 
per unit time through the surface u spanning the orbits. 

This research was sponsored by Nato research grant RG 85/0461 for international 
collaboration. We are grateful to A Weinstein for useful hints. 
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